Next Gen Instruments Archives - Medical Structure https://www.biogelx.com/category/next-gen-instruments/ Healthcare blog about new technologies in the medicine Thu, 17 Nov 2022 15:24:52 +0000 en-US hourly 1 https://wordpress.org/?v=6.1.1 https://www.biogelx.com/wp-content/uploads/2022/11/cropped-favicon-logo-32x32.png Next Gen Instruments Archives - Medical Structure https://www.biogelx.com/category/next-gen-instruments/ 32 32 The application of genetic engineering https://www.biogelx.com/the-application-of-genetic-engineering/ https://www.biogelx.com/the-application-of-genetic-engineering/#respond Thu, 13 Oct 2022 15:01:00 +0000 https://www.biogelx.com/?p=92 Human insulin (humulin) obtained through recombinant DNA is already in active use. Cloned human insulin genes were injected into a bacterial cell, where it began synthesizing a hormone that natural microbial strains never synthesized. Since 1982, companies in the U.S., Japan, Great Britain, and other countries have been producing genetically engineered insulin. In addition, several […]

The post The application of genetic engineering appeared first on Medical Structure.

]]>
Human insulin (humulin) obtained through recombinant DNA is already in active use. Cloned human insulin genes were injected into a bacterial cell, where it began synthesizing a hormone that natural microbial strains never synthesized. Since 1982, companies in the U.S., Japan, Great Britain, and other countries have been producing genetically engineered insulin.

In addition, several hundred new diagnostic drugs have already been introduced into medical practice. Among the drugs in clinical trials are drugs potentially treating arthritis, cardiovascular disease, cancer and AIDS. Among the several hundred genetically engineered companies, 60% are involved in the development and production of drugs and diagnostics.

"In medicine today, among the achievements of genetic engineering we can highlight cancer therapy, as well as other pharmacological innovations - stem cell research, new antibiotics that target bacteria, treatment of diabetes. It is true that all this is still at the research stage, but the results are promising,"

The post The application of genetic engineering appeared first on Medical Structure.

]]>
https://www.biogelx.com/the-application-of-genetic-engineering/feed/ 0
The first biodegradable pacemaker https://www.biogelx.com/the-first-biodegradable-pacemaker/ https://www.biogelx.com/the-first-biodegradable-pacemaker/#respond Sat, 30 Jul 2022 12:51:00 +0000 https://www.biogelx.com/?p=57 Since the first pacemaker was installed in 1958, the devices have become much smaller and their lifespan has increased. Periodically, however, the devices still need battery replacement, and the wires can wear out. This leads to new surgical interventions. In addition, complications occur with the classic pacemaker, including infection of the implanted area, displacement of […]

The post The first biodegradable pacemaker appeared first on Medical Structure.

]]>
Since the first pacemaker was installed in 1958, the devices have become much smaller and their lifespan has increased. Periodically, however, the devices still need battery replacement, and the wires can wear out. This leads to new surgical interventions.

In addition, complications occur with the classic pacemaker, including infection of the implanted area, displacement of the device, tissue damage, bleeding, and thrombosis. Over the past 5 years, several models have been created to make the device as comfortable and effective for patients as possible.

  • In 2015, Israeli scientists proposed using a light-sensitive protein to control rhythm. Using a virus, they injected the algal protein ChR2, which responds to blue light, into the heart cells of experimental rats. It opens ion channels in the membrane in response to the pulse. The experiment showed that the flashes of light can be used to tune the heart rate. However, in order to use ChR2 with the human heart, the problem of light penetration through body tissues must be solved.
  • In 2017, researchers from Israel and Canada developed a biological pacemaker using cells that are functionally similar to natural cells that stimulate heart function. They grew them from embryonic stem cells. During the experiment, the transplanted pacemaker cells restored heart rhythm in six out of seven rats.
  • In 2019, American engineers developed a generator capable of generating electricity through the contractions of the heart muscle. The current in this case is transmitted to a nearby pacemaker. The developers believe that in the future such a device will make it possible to create a fully autonomous pacemaker that does not require battery replacement.

Statistics and Practice of Pacemaker Use

At least 3 million people around the world live with pacemakers, and about 600,000 devices are implanted in patients each year. In Great Britain alone, 32,902 devices were implanted in 2018-2019 to keep the heart working steadily. Many movie stars, athletes, and politicians live with pacemakers. Cardiomyopathies, bradycardia, heart block, and heart failure can be reasons for the device.

The post The first biodegradable pacemaker appeared first on Medical Structure.

]]>
https://www.biogelx.com/the-first-biodegradable-pacemaker/feed/ 0
Using 3D printing in the medicine https://www.biogelx.com/using-3d-printing-in-the-medicine/ https://www.biogelx.com/using-3d-printing-in-the-medicine/#respond Mon, 16 May 2022 12:32:00 +0000 https://www.biogelx.com/?p=53 3D printing has been used in medicine since the early 2000s, when the technology was first used to make dental implants. Since then, the use of 3D printing in medicine has expanded significantly: Doctors from around the world describe ways to use 3D printing to produce ears, skeletal parts, airways, jawbone, eye parts, cell cultures, […]

The post Using 3D printing in the medicine appeared first on Medical Structure.

]]>
3D printing has been used in medicine since the early 2000s, when the technology was first used to make dental implants. Since then, the use of 3D printing in medicine has expanded significantly: Doctors from around the world describe ways to use 3D printing to produce ears, skeletal parts, airways, jawbone, eye parts, cell cultures, stem cells, blood vessels and vascular networks, tissues and organs, new drug forms, and much more.

The example of test prosthesis built by 3D printer

3D printing has been used in medicine since the early 2000s, when the technology was first used to make dental implants. Since then, the use of 3D printing in medicine has expanded significantly: Doctors from around the world describe ways to use 3D printing to produce ears, skeletal parts, airways, jawbone, eye parts, cell cultures, stem cells, blood vessels and vascular networks, tissues and organs, new drug forms, and much more.

Using model files for 3D printing provides an opportunity for sharing work among researchers. Instead of trying to reproduce parameters described in scientific journals, physicians can use and modify off-the-shelf 3D models. To that end, the National Institutes of Health established the 3dprint.nih.gov exchange in 2014 to facilitate the exchange of open-source 3D models for medical and anatomical products, non-standard equipment and mockups of proteins, viruses and bacteria.

Neuroanatomical models printed on a 3D printer can be particularly useful for neurosurgeons, providing insight into the most complex structures in the human body, which in principle cannot be obtained based on two-dimensional images.

The post Using 3D printing in the medicine appeared first on Medical Structure.

]]>
https://www.biogelx.com/using-3d-printing-in-the-medicine/feed/ 0